Test-Driven Development

What part of the system do you test first? The Proactive Testing
Model helps you prioritize, manage a project-level plan and steer

clear of risks. Part 4 of 4. By ROBIN F. GOLDSMITH AND DOROTHY GRAHAM

S DO DEVELOPERS, MOST TESTERS RECOG-
A nize that models are valuable aids;

however, testing doesn’t often get
the attention cast on other activities in
the development lifecycle. The V Model
is probably the best-known testing
model, but many testers are unfamiliar
with it. And the V Model isn’t free from
criticism: One of the more vocal critics of
the V Model is Brian Marick, author of
The Craft of Software Testing (Prentice
Hall, 1995). In part 2 of this series, “V or
X, This or That” (Aug. 2002), we des-
cribed the “X Model,” covering points
that Marick felt should be present in a
suitable testing model. Part 1, “The For-
gotten Phase” (July 2002), discussed the
V Model itself.

In Part 3, “Proactive Testing” (Sept.
2002), we introduced the Proactive Test-
ing Model, which we believe incorporates
the strengths and addresses the weak-
nesses of both V and X Models. In this
final installment, we delineate the bene-
fits of letting testing drive development.

Proactive Test Planning
The diagram “A Sophisticated Standard”

Robin E. Goldsmith is president and co-
founder of Go Pro Management Inc., in
Needham, Mass. Reach him at www
.gopromanagement.com.

Dorothy Graham is the founder of
Grove Consultants in the UK. In 1999, she
was awarded the IBM European Excel-
lence Award in Software Testing.

52 | October 2002

(see page 53) depicts the oft-followed
test-planning structure suggested by
IEEE standard 829-1998. Some critics
view the standard as a counterproduc-
tive paper-generator. While such prac-
tices are common, they need not be. The
graphic overview adds value to the text-
only standard, making it easier to under-
stand and apply.

The standard suggests conceptualiz-
ing test plans at several different levels,
either as individual documents or sec-
tions within a larger document. The
master, overall system test plan is a
management document that ultimately
becomes part of the project plan.

We use a simple heuristic to drive
down to lower and lower levels of test-
planning detail: “What must we dem-
onstrate to be confident that it works?”

The master test plan identifies a set of
test plans that, when considered to-
gether, demonstrate that the system as a
whole works properly. Typically, a
detailed test plan describes each unit,
integration, special (a catch-all term for
tests that aren’t specifically driven by the
application, such as stress, security and
usability tests) and system test. In turn,
each detailed test plan identifies a set of
features and functions that, in concert,
demonstrate that the unit, integration,
special function or system is working
properly. For each feature and function,
a test design specification describes how
to demonstrate that the feature or func-
tion works properly. Each test design

specification identifies the set
of test cases that together
indicate that the feature or
function works.
The test-planning struc-
ture provides a number of
benefits. While it’s easy to see why many
testers think that the IEEE standard
requires voluminous documentation for
its own sake, that approach provides no
value, and we don’'t endorse it. However,
we don'’t reject written test plans out of
hand, as some X Model advocates seem
to do. Instead, we suggest recording
important test-planning information as
a memory aid and to facilitate sharing,
reuse and continual improvement.

For many people, test plans are pri-
marily a collection of test cases—a collec-
tion that can grow quite large and
unmanageable. One can see from the dia-
gram, though, that the standard’s struc-
ture provides immediate value by helping
to organize and manage the test cases.

We can proactively define reusable
test design specifications, identifying how
to test common situations. These specifi-
cations can prevent enormous amounts
of duplicated effort, enabling us to start
credible testing with little delay. Similarly,
the structure helps us define reusable test
cases and selectively allocate resources.
Moreover, the structure and test design
specifications make it easier to reliably re-
create test cases when necessary.

Proactive Prioritization

While risk prioritization should be a part
of any test approach, neither the V nor X
Models makes it explicit. Moreover, the
proactive risk analysis methods we use
are far more effective than the traditional
ones we've seen applied elsewhere.

SOFTWARE DEVELOPMENT

The proactive method improves testing
in two ways. First, traditional approaches
tend to assign risk to each test as it's iden-
tified. With nothing to compare to, each
test tends to be denoted as high risk. The
proactive test-planning structure, how-
ever, quickly reveals the available options,
so that we can prioritize with respect to all
our choices. Second, we can eliminate the
common reactive technique of rating the
risks of the tests that have been defined.
Obviously, no risks are assigned to tests
that have been overlooked, and over-
looked tests are often the biggest risks. In
contrast, proactive risk analysis enables us
to identify critical risks that the reactive
approach overlooks—and then to define
tests to ensure that these risks don't occur.

While we use proactive test planning
at each level, the most important task in-
volves identifying and prioritizing pro-
ject-level risks in the master test plan. In
particular, this proactive technique helps
us anticipate many of the traditional
showstoppers. Every developer we know
can readily name unexpected problems
that stopped the project at the worst pos-
sible time—usually right before or after
implementation.

When working with a project team, we
invariably find that they’re able to use
proactive risk analysis to identify a large
number of potential showstoppers. The
typical group reports that traditional pro-
ject and test planning would have over-
looked about 75 percent of these.

Once we've identified and prioritized
risks, we can define the pieces of the sys-
tem that need to be tested earlier. These
often aren’t the elements that the organi-
zation would ordinarily have scheduled
to build early.

Whereas the typical development plan
develops entire programs, often in job
execution sequence, the Proactive Testing
Model defines the system’s parts—units
or integrations—that must be present to
test the high risks. By coding these mod-
ules first, testing drives development.

Building and testing these high-risk
pieces early helps developers to catch
problems before they’ve done additional
coding that would have to be redone.

The effect is even more profound with
respect to special tests. Rather than being

WWW.SDMAGAZINE.COM

Standards, Policies | | Business Requirements
System Design Master Acceptance
Project Plan Test Plan Criteria
. . :) . Independent Acceptance
Unit Test Integration Special, Sys. (QA)Test Plan Test Plans
Plans Test Plans Test Plans
Independ_ent
Test Design Acceptance
i Test Design
Ij; | Test Logs l
Independent
| Test | Test] ol B
Designs L5l cases Incident Reports Test Design
Test Acceptance
Summary Reports Test Cases
A Sophisticated Standard

The test-planning structure suggested by IEEE standard 829-1998 suggests conceptualizing test
plans at different levels, either as individual documents or sections within a larger document.

employed within the system test (such as
load and security tests), or often over-
looked entirely (such as tests of training,
documentation and manual procedures),
special tests also merit detailed test plans
and resulting identity. Therefore, each
build may contain components that tradi-
tionally would have been addressed by
unit, integration and system tests.

An A-B-C Example

To get a feel for test-driven development,
let’s look at a simplified example. Assume
that we have a system consisting of three
programs, A, B and C, that in production
would be executed in the A-B-C se-
quence. It’s likely that the programs
would also be developed and tested in
the same sequence.

However, our risk analysis reveals that
the integration of B and C poses the high-
est risk. Therefore, programs B and C
should be built and unit-tested first.
Since problems discovered in B or C
could also affect A, finding these prob-
lems before A is coded can help prevent
having to rewrite parts of A.

The next highest risk is program A’s
message capacity. In a typical develop-
ment plan, we might build all of program
A and then unit test it—but as a whole, A
could be large and difficult to test and

debug. By breaking A into two units, one
dealing with the messaging and the other
with the remainder of the program’s
functions, we can more immediately test
the messaging capacity while it’s still rel-
atively easy to find and fix errors.

Next, we need an integration test to
ensure that the two parts of program A
function together correctly. And finally,
now that the B-C and A-subparts inte-
grations have been tested, we can
address the third-highest risk: testing the
integration of all three programs.

Note that the Proactive Testing Model
doesn’t dictate the specific sequence of
tests. Rather, it guides us to plan the
sequence of development and testing
based on the particulars of each project
to quickly and inexpensively arrive at the
desired result: higher-quality software.

Developers who've worked with the
Proactive Testing Model can immedi-
ately identify the nature and magnitude
of problems that this approach helps
them avoid. They know that these prob-
lems are often the cause of delayed,
over-budget projects. When managers
and developers realize how proactive
testing helps them become aware of
these risks—and prevent them—it’s a
WIIFM (What’s In It For Me?) they can
readily embrace. L |

October 2002| 53

